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Analysis of strength data using two- and
three-parameter Weibull models
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The strength of ceramic components is adequately described using the Weibull distribution.
Values of Weibull modulus and characteristic strength were obtained for two- and
three-parameter models for chemically toughened glass and phosphate-bonded
investment. The data for glass consisted of strength measurements from fifty specimens
loaded in a similar way to operation. The data for phosphate-bonded investment was
obtained by measuring four-point bend strength of fifty specimens at room temperature.
All values of strength were plotted on modified Weibull probability scales on the x-axis
against median ranks on the y-axis. The Weibull modulus for the two-parameter model
was determined from the slope of the best fit straight line through the data. For the
three-parameter model a correction was made to the ‘‘curve’’ of the two-parameter model by
determining the probable value of the lower bound of strength. Ranks were also used to
establish tolerance limits for design strengths.

The values of Weibull modulus obtained from the two-parameter and three-parameter
models were similar for chemically toughened glass but different for phosphate-bonded
investment. The three-parameter Weibull distribution was found to give a more reliable
estimate of the Weibull modulus for phosphate-bonded investment.  1998 Chapman & Hall
1. Introduction ment in which the metal forming operation occurs is

The strength of ceramic components is an important
design criterion that depends in part on size and shape
but often more importantly on surface or internal flaw
size and distribution as well as the inherent cohesive
strength of the material. Phosphate-bonded invest-
ment materials are a class of ceramic material that are
currently used in the production of heat-resistant
moulds for dental castings in cobalt—chromium alloys.
The set material consists of particles of silica refrac-
tory in a matrix of magnesium ammonium phosphate.
Phosphate-bonded investment materials have also
been used more recently for the fabrication of dies for
the superplastic forming of dental implant superstruc-
tures [1] and denture bases [2—10] in titanium alloy.
In the superplastic forming process dies of phosphate-
bonded investment are produced from a slurry of
powder and water and poured into moulds. The set
material is then removed from the mould and inserted
into the tool of the metal forming press. At temper-
atures around 900 °C argon gas is used to force the
titanium alloy sheet down onto the surface of the die
and the detail of the die surface is transferred to the
metal sheet. Thus it is possible to transfer the detailed
undulations of the mucosa into the metal plate to
make accurate fit surfaces for metal denture bases.

Changes in the use of investment materials such as
the one described above necessarily require increased
knowledge about this class of materials as the environ-
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somewhat different from the situation in which molten
metal is cast into refractory moulds. The investment
material is heated to similar temperatures both for
casting and metal forming — the cast mould is heated
to 950 °C even though the molten metal is around
1350 °C when it enters the mould in the casting pro-
cess. However, the stress fields are not equivalent. In
the metal forming process the die is essentially in
compression although a degree of bending or point
loading will occur. One of the limitations of die design
will be its ability to withstand these stresses. Surface
and internal flaws may well play a part in the mater-
ials’ resistance to fracture and an analysis of strength
data is required for this design process.

The Weibull distribution has been shown to be an
appropriate model to describe strength data for ce-
ramic materials [12] and two- and three-parameter
Weibull models have been adopted to do so [13]. It is
the purpose of this study to apply Weibull analysis to
two data sets generated from two different ceramic
materials and to test the accuracy of the model to
describe the data. The first data set of chemically
toughened glass is used for comparison in that the
data set was taken from the literature [12] and has the
same large sample size as that produced for phos-
phate-bonded investment which was generated by the
method used for the manufacture of superplastic form-
ing dies.

1151



2. Materials and methods 2.2. Three-parameter model

Two data sets each comprising of fifty measurements
of fracture strength were acquired. The data set for
chemically toughened glass was obtained from the
literature [12] whilst that for phosphate-bonded
investment was produced by mixing in air by hand
at a water-to-powder ratio of 0.12. The specimens
of phosphate-bonded investment were produced
by pouring the slurry into a mould of polyvinyl
siloxane duplicating material. The set specimens had
the dimensions 100mm length]15mm width]15mm
height. Measurements of fracture strength were made
using a four-point bend test configuration on an
Instron tensile testing machine and specimens were
deformed at a rate of 1 mmmin~1.

The fifty measurements of fracture strength from
each group were ranked in order from least strong to
most strong. In each case the data set was divided into
six groups and histograms drawn showing frequency
of data points in each group. However, because often
only small samples are available the shape of these
histograms can vary significantly with change in class
size. Therefore, a cumulative distribution plot is often
preferred.

Thus, both data sets were transformed according to
the following equations to plot the data on scales
equivalent to Weibull probability paper to obtain
values of the two- and three-parameter models for
both materials [13].

2.1. Two-parameter model
1. Arrange strength values in increasing order.
2. Assign median ranks to these values of strength

using the following approximation

Median rank"A
i~0.3

n`0.4B (1)

where i"failure order number, n"sample size.
3. Plot the data on scales equivalent to Weibull

probability paper with strength on the abcissa and
median ranks on the ordinate

½ " ln ln A
1

1!Median rankB (2)

X " ln(strength) (3)

4. Draw the best fitting line through the points (fit
by least squares method).

5. The slope of the line is the Weibull modulus, m.
6. The characteristic strength, h, is the strength cor-

responding to 63.2% failed:

h" expA!A
intercept

m BB (4)

The cumulative distribution function shown below
is then plotted for the data

CDF"1!expG!CA
x

hB
m

DH (5)

where x"strength (MPa).
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1. Arrange strength values in increasing order.
2. Assign median ranks to these values of strength

using Equation 1.
3. Plot the data on scales equivalent to Weibull

probability paper with strength on the abcissa and
median ranks on the ordinate (Equations 2 and 3).

4. Draw the best fitting line through the points (fit
by least squares method).

5. A correction is made to the resultant curve
by determining the probable value of the lower bound
of strength x

0
. This value should be somewhere

between the lowest measured value of the sample
and zero. By trial x

0
is subtracted from the original

set of data and plotted against median ranks (½) as
before.

6. By the least squares method a line is fitted to the
modified data set.

7. A range of values of x
0

are selected and the
data modified and plotted as above until the value
of x

0
corresponding to the line with best fit is

identified.
8. The characteristic strength can then be com-

puted from the relationship

h" expC!A
intercept

m BD#x
0

(6)

9. The cumulative distribution function for the
three-parameter model can then be plotted for the
data

CDF" 1!expG!CA
x!x

0
h!x

0
B
m

DH (7)

where x"strength(MPa).

2.3. Determination of tolerance limits
To determine tolerance limits for the jth value in n, the
following procedure is appropriate [14]. The true
rank is given by

n
Z

j
and is to be estimated as it is an

unknown. It is necessary to determine the true rank of
the jth observation in n. The ranks of all observations
are distributed according to the probability density
function

g (
n
Z

j
)"

n !

( j!1) ! (n!j )! n
Zj~1

j
(1!

n
Z

j
)n~j (8)

Integration of Equation 8 gives the cumulative dis-
tribution function of

n
Z

j
which is

G(
n
Z

j
)" 1!(1!

n
Z

j
)n!n

n
Z

j
(1!

n
Z

j
)n~1!

n(2)

2!

]
n
Z2

j
(1!

n
Z

j
)n~2!2!

n j~1

( j!1)!

]
n
Zj~1 (1!

n
Z

j
)n~j`1 (9)

[NB n(2)"n (n!1) n(3)"n (n!1) (n!2) n( j~1)

"n (n!1) (n!2)2 (n!j#2)].
The median value of

n
Z

j
is found by putting

G(
n
Z

j
)"1

2
and solving for

n
Z

j
.



TABLE I Estimates of 5% and 95% ranks for the jth observation
in a sample size of n"50
j 5% rank 95% rank j 5% rank 95% rank

1 0.0010 0.0582 26 0.3954 0.6238
2 0.0072 0.0914 27 0.4148 0.6427
3 0.0166 0.1206 28 0.4343 0.6615
4 0.0278 0.1478 29 0.4540 0.6802
5 0.0402 0.1738 30 0.4739 0.6986
6 0.0536 0.1988 31 0.4940 0.7169
7 0.0676 0.2232 32 0.5142 0.7349
8 0.0822 0.2469 33 0.5347 0.7528
9 0.0972 0.2702 34 0.5554 0.7705

10 0.1127 0.2931 35 0.5763 0.7879
11 0.1286 0.3156 36 0.5974 0.8051
12 0.1447 0.3378 37 0.6187 0.8221
13 0.1612 0.3597 38 0.6403 0.8388
14 0.1779 0.3813 39 0.6622 0.8553
15 0.1949 0.4026 40 0.6844 0.8714
16 0.2121 0.4237 41 0.7069 0.8873
17 0.2295 0.4446 42 0.7298 0.9028
18 0.2472 0.4653 43 0.7531 0.9178
19 0.2651 0.4858 44 0.7768 0.9324
20 0.2831 0.5060 45 0.8012 0.9464
21 0.3014 0.5261 46 0.8262 0.9598
22 0.3198 0.5460 47 0.8522 0.9722
23 0.3385 0.5657 48 0.8794 0.9834
24 0.3573 0.5852 49 0.9086 0.9928
25 0.3762 0.6046 50 0.9418 0.9990

Figure 1 Histograms shown for (a) chemically toughened glass and
(b) phosphate-bonded investment based on 50 measurements for
each material and data divided into six bins.
Figure 2 Weibull plots shown for (a) chemically toughened glass
and (b) phosphate-bonded investment showing the modified data
plotted as a function of the lower bound of strength, x

0
. (a) x

0
"(d)

0, (s) 20, (.) 42.2, (£) 60, (j) 120, (h) 180. (b) x
0
"(d) 0, (£) 0.4,

(j) 0.8, (e) 1.048, (m) 1.1, (s) 1.5.

Thus

1!(1!
n
Z

j
)n!n

n
Z

j
(1!

n
Z

j
)n~1!

n(2)

2! n
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](1!
n
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n
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(10)

To determine the rank below which 5% of all jth
observations in n are expected Equation 9 would
become

1!(1!
n
Z

j
)n!n

n
Z

j
(1!

n
Z

j
)n~1!

n(2)

2! n
Z2

j

](1!
n
Z

j
)n~2!2!

n ( j~1)

( j!1)!

]
n
Zj~1

j
(1!

n
Z

j
)n~j`1" 5

100
(11)

and to determine the rank below which 95% of all jth
observations in n are expected Equation 9 would
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Figure 3 Measured and calculated cumulative distribution functions shown for the two materials based on the estimated values of the
Weibull parameters by regression analysis. (a) Chemically toughened glass, two-parameter model: x

0
"0, h"394.811, m"6.436. (b)

Chemically toughened glass, three-parameter model: x
0
"42.2, h"394.460, m"5.611. (c) Investment, two-parameter model: x

0
"0,

h"1.488, m"14.74. (d) Investment, three-parameter model: x
0
"1.05, h"1.480, m"3.542.
become The parameters for the Weibull models based upon
1!(1!
n
Z

j
)n!n

n
Z

j
(1!

n
Z

j
)n~1!

n(2)

2! n
Z2

j

](1!
n
Z

j
)n~2!2!
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( j!1)!

]
n
Zj~1

j
(1!

n
Z

j
)n~j`1" 95

100
(12)

Thus, if n"50 and j"2 the 5% and 95% ranks,
0.0072 and 0.0914, respectively, are determined by solv-
ing Equations 11 and 12. The middle 90% of all second
failures in 50 would be found between these values.

Tables of solutions exist for these equations but it
was found necessary to generate the solutions for
n"50 since these were not readily available (Table I).

3. Results and discussion
The histograms for the two data sets are shown in
Fig. 1 and were derived by dividing the data points
between six bins in each case.

1154
two and three parameters were found using the modi-
fied Weibull plots shown in Fig. 2. The two-parameter
model was applied by fitting the modified data for
x
0
"0 and the three-parameter model by estimating

the value of the lower bound of strength, x
0
, that gave

the best fit straight line using the least squares method.
The estimated parameters were then used to gener-

ate the cumulative distribution functions for the two
and three parameter models for chemically toughened
glass and phosphate-bonded investment and the re-
sults are shown in Fig. 3 along with the measured
values of strength.

The cumulative distribution functions showing
90% tolerance limits for the three parameter models
for chemically toughened glass and phosphate-
bonded investment are shown in Fig. 4.

The v2 statistic was used to determine the suitability
of the models to fit the measured data and histograms
are shown in Fig. 5 which compares the measured
data with the estimated distributions. The estimates
were generated using the model parameters.



number of decimal places that are chosen for x
0
signif-
Figure 4 Ninety percent tolerance limits for the strengths of (a)
chemically toughened glass and (b) phosphate-bonded investment
as a function of fraction failed.

Fig. 6 is a box plot of both data sets shown on the
same scale that shows the scatter associated with
chemically toughened glass compared to phosphate-
bonded investment. This shows that although compo-
nents produced from toughened glass could be
designed with higher strengths it appears that there is
more uncertainty associated with the value of fracture
strength for this material.

The histograms for the two materials (Fig. 1) show
that both data sets are skewed, as would be expected if
the Weibull distribution was fitted. It is generally
known that properties such as strength and fatigue life
are best represented by the Weibull distribution rather
than the normal distribution especially when meas-
ured values exhibit large scatter [12].

The method that is described to fit the two- and
three-parameter models has the advantage that it is
straightforward and in the case of the three-parameter
model allows the lower bound of strength, x

0
, to be

estimated. By varying, x
0
, the data sets are seen to

curve, first one way and then the other, about the
value of x

0
that gives best fit by linear regression. The
icantly changes the regression coefficient and thus the
values of the Weibull modulus and characteristic life.
It should be apparent that the accuracy with which
strength data can be measured can influence the re-
gression analysis significantly. However, should the
data fit the model as shown for chemically toughened
glass both two- and three-parameter models are ob-
served to be in good agreement. Regression analysis is
only one of several methods that have been used to
estimate the Weibull parameters and other methods
such as moments method or maximum likelihood are
reportedly more robust [15]. An exact solution for the
dependence of standard deviation on the number of
tests has been evaluated by the maximum likelihood
procedure but for a known Weibull modulus, m.

Given that the magnitudes of the Weibull para-
meters can differ when two or three parameters are
used, as shown for phosphate-bonded investment, it is
necessary to determine a method that will allow the
best fitting model to be chosen. v2, for goodness of fit
has been used here to compare model distributions
with measured distributions and it is clear that the
three-parameter models are more appropriate in
both cases (Fig. 5). This result is more important
for phosphate-bonded investment than for chemically
toughened glass since the Weibull modulus is so
widely different for the investment material,
m"14.74 (two-parameter model) compared to
m"3.54 (three-parameter model). The ability of the
three-parameter model to fit the phosphate-bonded
investment data is more apparent for the lower half of
the data set where the curve more faithfully follows the
data points.

For design purposes lower and upper limits of
strength have been determined based on ranks.
Table II shows the lower and upper limits for charac-
teristic strength h (63.2% failed), median strength
(50% failed) and B

10
strength (10% failed). These

values represent the 90% tolerances for design
strength for both materials. Thus, for example, it is
possible to state that there is 90% certainty that
the B

10
strength would be between 1.24 and 1.31

for phosphate-bonded investment at room temper-
ature in four-point bending at a liquid to powder ratio
of 0.12.

4. Conclusions
1. The Weibull distribution can be used to describe

strength measurements for chemically toughened glass
and phosphate-bonded investment.

2. The v2 statistic showed that the three parameter
models gave better descriptions of the data sets of
both materials but these results had more significance
for phosphate-bonded investment since the Weibull
modulus was quite different for the two models. Char-
acteristic life on the other hand was apparently inde-
pendent of model chosen.

3. Ninety percent tolerance limits for design
strengths such as true characteristic strength, median
strength and true B

10
strength were calculated for

both materials.
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Figure 5 Histograms showing comparison of distributions for measured and calculated data with the corresponding value for goodness of fit,
v2, for the specific material and model. Chemically toughened glass, (a) v2"0.16 and (b) v2"0.11. Phosphate-bonded investment,
(c) v2"1.14 and (d) v2"1.12. (Z) data; (——) (a) and (c) two-parameter model and (b) and (d) three-parameter model.
TABLE II Confidence intervals (90%) for various measures of
strength for the two data sets of chemically toughened glass and
Figure 6 Box plot showing measured data points for both mater-
ials. The plot shows the 10th, 25th, 50th, 75th and 90th percentiles as
lines on a bar centred about the mean, and the 5th and 95th
percentiles as error bars. The data points beyond the 5th and 95th
percentiles are also displayed.
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phosphate-bonded investment

Design strengths Chemically toughened Phosphate-bonded
(MPa) glass investment

5% rank 95% rank 5% rank 95% rank

h, true
characteristic
strength

372.7 409.6 1.45 1.53

True median
strength

351.4 391.9 1.41 1.49

True B
10

strength
236.9 309.2 1.24 1.31
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